Graphene field effect transistor as a radiation and photo detector

نویسندگان

  • Ozhan Koybasi
  • Isaac Childres
  • Igor Jovanovic
  • Yong
  • P. Chen
چکیده

We exploit the dependence of the electrical conductivity of graphene on a local electric field, which can be abruptly changed by charge carriers generated by ionizing radiation in an absorber material, to develop novel highperformance radiation sensors for detection of photons and other kinds of ionizing radiation. This new detection concept is implemented by configuring graphene as a field effect transistor (FET) on a radiation-absorbing undoped semiconductor substrate and applying a gate voltage across the sensor to drift charge carriers created by incident photons to the neighborhood of graphene, which gives rise to local electric field perturbations that change graphene resistance. Promising results have been obtained with CVD graphene FETs fabricated on various semiconductor substrates that have different bandgaps and stopping powers to address different application regimes. In particular, graphene FETs made on SiC have exhibited a ~200% increase in graphene resistance at a gate voltage of 50 V when exposed to room light at room temperature. Systematic studies have proven that the observed response is a field effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum modeling of light absorption in graphene based photo-transistors

Graphene based optical devices are highly recommended and interested for integrated optical circuits. As a main component of an optical link, a photodetector based on graphene nano-ribbons is proposed and studied. A quantum transport model is presented for simulation of a graphene nano-ribbon (GNR) -based photo-transistor based on non-equilibrium Green’s function method. In the proposed model a...

متن کامل

Energy Deposition in a Graphene Field Effect Transistor Based Radiation Detector

The development of high-performance radiation detectors is essential for commercial, scientific, and securityapplications [1]. Due to the unique electronic properties of graphene (high-speed, low-noise), recent radiationdetectors utilize graphene field effect transistors to sense charge carriers produced by radiation interactions in agated semiconductor [2]. A study of the energy de...

متن کامل

A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor

Despite the simplicity of the hexagonal graphene structure formed by carbon atoms, the electronic behavior shows fascinating properties, giving high expectation for the possible applications of graphene in the field. The Graphene Nano-Ribbon Field Effect Transistor (GNRFET) is an emerging technology that received much attention in recent years. In this paper, we investigate the device performan...

متن کامل

Gate Tuning of Förster Resonance Energy Transfer in a Graphene - Quantum Dot FET Photo-Detector

Graphene photo-detectors functionalized by colloidal quantum dots (cQDs) have been demonstrated to show effective photo-detection. Although the transfer of charge carriers or energy from the cQDs to graphene is not sufficiently understood, it is clear that the mechanism and efficiency of the transfer depends on the morphology of the interface between cQDs and graphene, which is determined by th...

متن کامل

Graphene Nano-Ribbon Field Effect Transistor under Different Ambient Temperatures

This paper is the first study on the impact of ambient temperature on the electrical characteristics and high frequency performances of double gate armchair graphene nanoribbon field effect transistor (GNRFET). The results illustrate that the GNRFET under high temperature (HT-GNRFET) has the highest cut-off frequency, lowest sub-threshold swing, lowest intrinsic delay and power delay product co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012